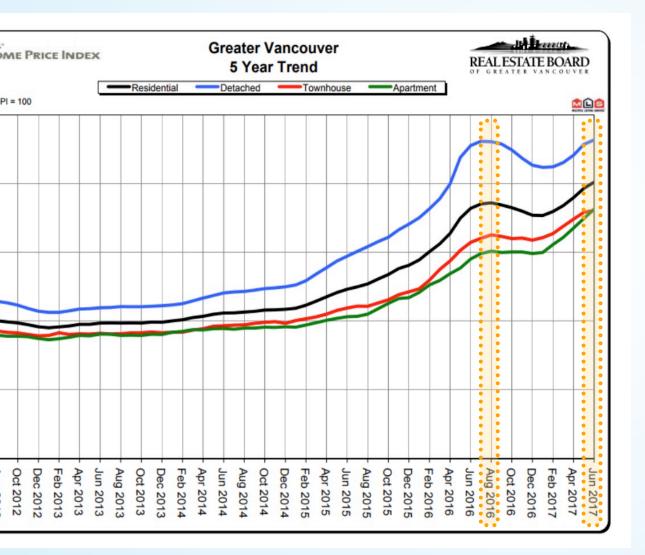


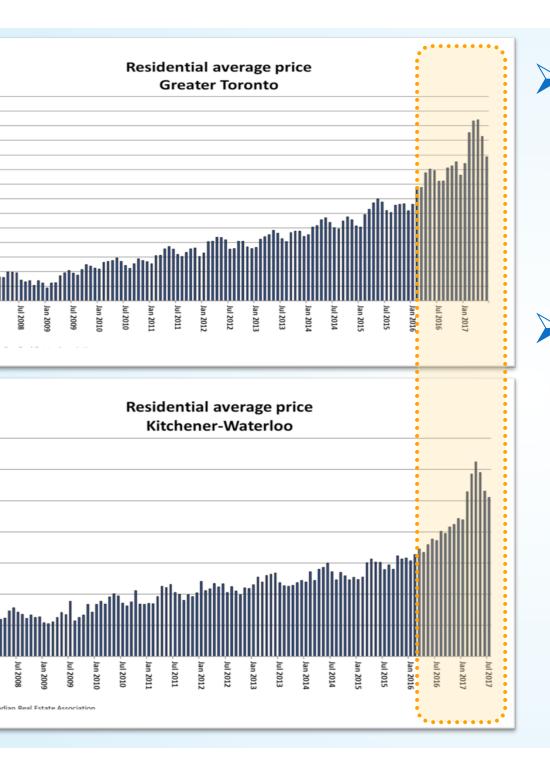
Interpreting and Modelling the Housing Market from Individual Behaviours

Yu Huang, Dawn Parker, Jennifer Dean, Justin Cook and Xinyue Pi


Social Sciences and Humanities Research Council of Canada Conseil de recherches en sciences humaines du Canada

What is exciting about Canadian housing markets?

Greater Vancouver Price Trends


(Source: http://www.rebgv.org/monthly-reports)

July, 2016 - Housing Boo 20% - 40% price increas

August, 2016 - Foreign Buyers Tax

June, 2017 - Prices bour back sharply to an avera \$1,046,982

How will the Empty Ho Tax impact the housing market?

> Toronto market

- average price up to \$920,791
 April 2017
- Greater Toronto area also instit foreign buyers/investors taxes

> Waterloo market

- before 2016, 3-5% steady ann appreciation
- April 2016 April 2017, 30% appreciation
- average price surpasses \$500, April 2017
- quickly normalizes, but price sti increases 17.4% in July 2017 compared to 2016

Why Kitchener-Waterloo Region?

- Increasing people and employment
- High tech hub with entrepreneurship and knowledge-intensive economy
- A new light rail transit system as a key strategy urban revitalization and overall economic development strategy
- Housing boom (price volatility), but why?

Research Questions...

- 1. How can we better interpret the housing market dynan Kitchener-Waterloo Region?
- 2. What are the housing demand or preferences among heterogeneous households during the boom?
 - How can we analyze the housing demand?
 - Specifically, how can we build a <u>theoretically-</u> <u>grounded, empirical model to interpret housing</u> <u>demand</u> in this Region?

Why housing demand analysis matters?

Alonso (1964) proposed the bid-rent theory, and pointed out tha housing prices and location choices are simultaneously determined by a bidding process

Rosen (1974)'s first-stage hedonic regression tells nothing abou demand heterogeneity; Second-stage hedonic (basically dema analysis) has endogeneity problem

Demand analysis matters for assessing policy/environmenta changes, say the LRT implementation

What are the technical problems for demand analysis?

Hard to connect Alonso bid-rent theory with empirical demand analysis

- 1. Bid price or WTP is theoretically unobservable and heterogeneous among households
- 2. Utility parameterization problems: hard to know the preference weights
- 3. Lack of demographics (income, household size, etc.) and preference information

Research Methodology...

 Interpreting the Housing Market Dynamics in Kitchener-Waterloo from Individual Behaviours

1. Housing Survey – Unpacking Individual Behaviours

0

Researchers from the University of Waterloo want to hear about your

Home Buying and/or Selling Experience in Kitchener-Waterloo!

- Residential and neighbour characteristics
- Home selling/buying experience
- Location choice preference
- ✓ Preferences towards LRT
- Household demographic

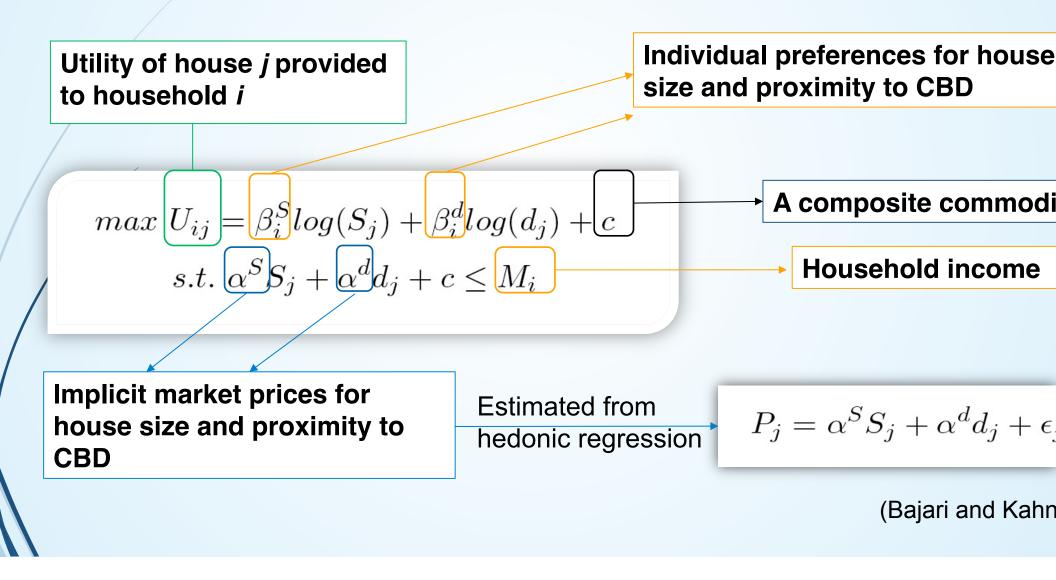
travel behaviour

- This is the major difference between our survey and other hour
- we ask their *ideal* house and neighbourhood characteristics

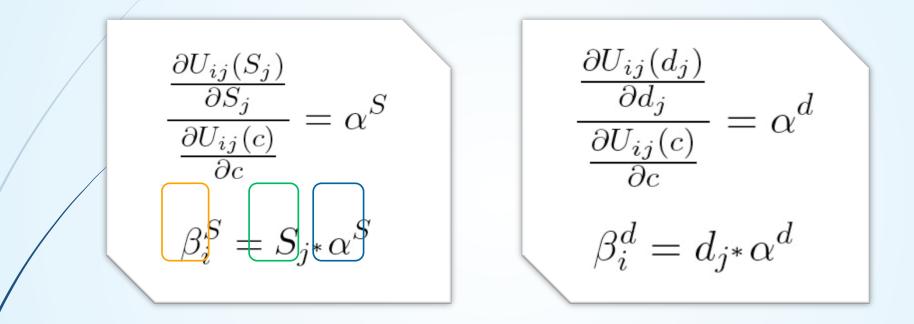
Housing Survey Summary

✓ Survey target: Home Buyers and Sellers from 06/2015 - 04/2017

Survey mails out: 5000 addresses rented from Canada Post

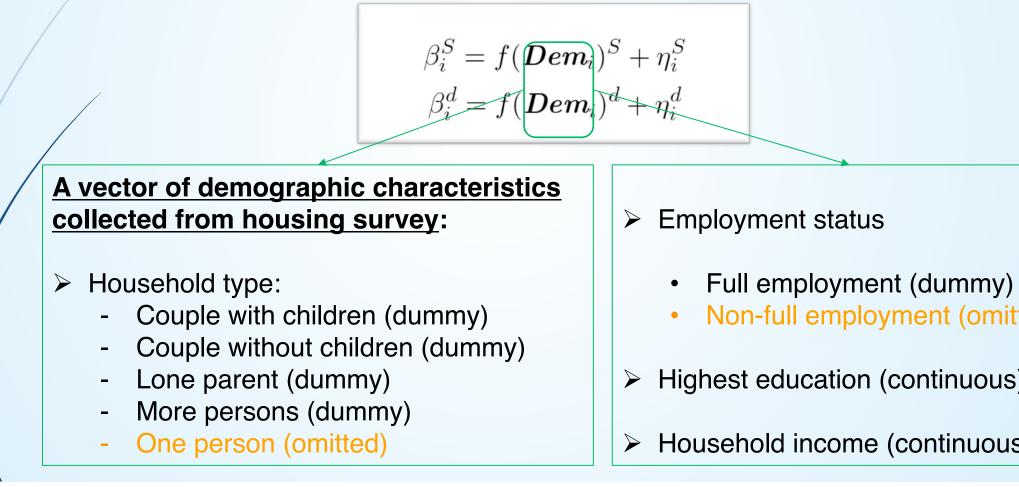

/Survey responses:

Responses		Total
Buyers only	269	Total buyers 357
Sellers only	61	Total sellers 149
Both buyers and sellers	88	Response rate 10%


2. Housing Demand Analysis - theoretical foundation

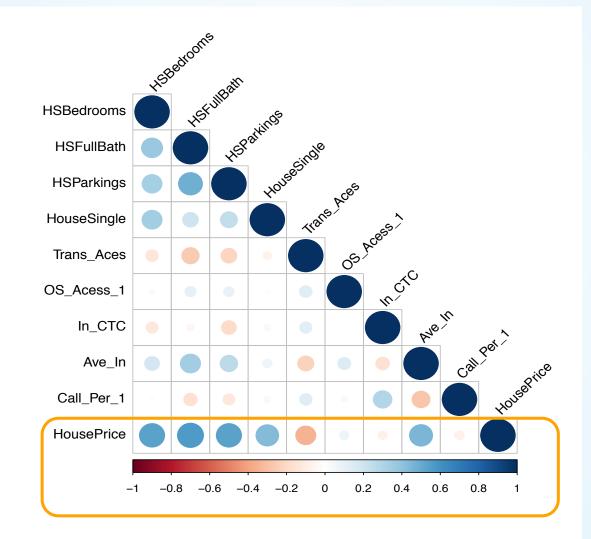
- Traditional location choice problem budget constraint, utility maximization (Alonso, 1964)
- Suppose only two characteristics house size (S_j) and proximity to CBD (d_j) compose the house j, the optimization problem can be formulated based on the theory.

The optimization problem based on Alonso bid-rent the


Solving the optimization problem, we derive,

 A way to "recover" <u>household-level preference</u> parameters in the utility function with strong theoretical foundation.

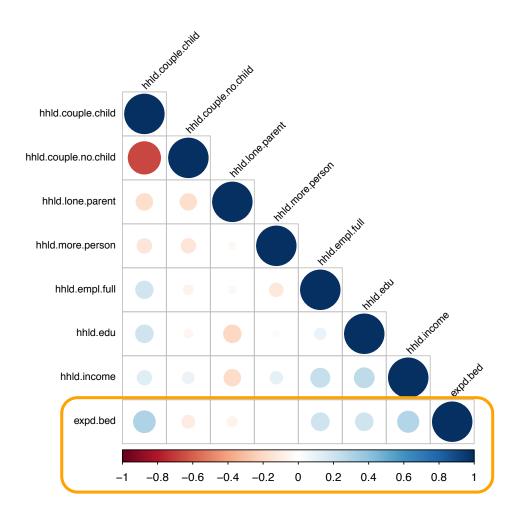
Regress the expenditure on demographics to recover heterogeneous housing demand...


 Assume that households with similar demographic characteristics have similar preferences.

Briefly, three estimation steps

	Step 1	Estimate implicit prices by hedonic (α)
(Bajari & Kahn, 2005)	Step 2	Calculate expenditures on each characteristic (β)
	Step 3	Regress the expenditures (β) on demographics

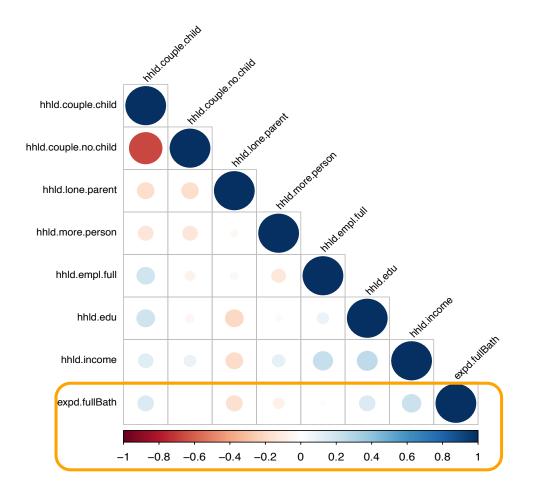
Step 1 – Hedonic Regression



Hedonic Regression – OLS Results

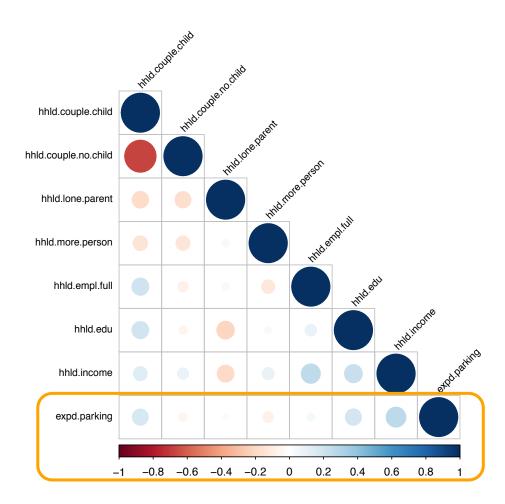
ePrice Number of Observations 409296 Number of Variables		
	: 10	
142266 Degrees of Freedom	: 305	
620390 F-statistic	:	55.384
609188 Prob(F-statistic)	:	0
9e+012 Log likelihood		4032.03
4e+009 Akaike info criterion	: 8	8084.05
9078.8 Schwarz criterion	: 8	8121.58
3e+009		
7653.5		
(142266 Degrees of Freedom 620390 F-statistic 609188 Prob(F-statistic) 9e+012 Log likelihood 4e+009 Akaike info criterion	142266 Degrees of Freedom : 305 620390 F-statistic : 609188 Prob(F-statistic) : 9e+012 Log likelihood : -4 4e+009 Akaike info criterion : 8 9078.8 Schwarz criterion : 8 3e+009

Variable	Coefficient	Std.Error	t-Statistic F	Probability
CONSTANT		29989.4	4 –3.02242	0.00272
Bedrooms	45317.7	7458.	8 6.07574	0.00000
Full Baths	40067.5	8581.9	4.6688	0.00000
Covered Parkings	50458.8	10111.	4 4.9903	0.00000
Single-detached house	75231.8	12357.	6 6.08788	0.00000
Transit accessibility	-74.4146	17.698	4 -4.20459	0.00003
Open space accessibility	29.2855	34.555	1 0.847504	0.39738
In CTC	33886.9	19936.	3 1.69975	6 0.09020
Neighborhood ave income	2.96989	0.48631	4 6.10693	0.00000
Neighborhood safety	825.299	740.49	4 1.11453	0.26593


Step 2, 3 - Demand analysis for bedroom

	Housing and neighbourhood characteristic
	Bedroom
Household highest education	5,085.206*
	(3,020.320)
Household annual income	0.125***
	(0.040)
Household-couple with children	25,071.490***
	(6,033.826)
Household-couple without children	10,757.230*
	(5,943.210)
Household-lone parent	12,615.090
L	(9,847.948)
Household-more persons	13,355.430
1	(12,029.580)
Household with full employment	9,396.528*
	(5,536.505)
Constant	93,954.640***
	(8,948.351)
Observations	288
R ²	0.187
Adjusted R ²	0.166
Residual Std. Error	$29,968.510 \ (df = 280)$
F Statistic	9.190^{***} (df = 7; 280)
Note:	*p<0.1; **p<0.05; ***p<0.0

Table 1: Regression of bedroom expenditures on demographics


Demand for full bathrooms

	Housing and neighbourhood characterist
	Bedroom
Household highest education	3,006.680 (2,662.345)
Household annual income	0.110^{***} (0.035)
Household-couple with children	7,461.083 (5,318.682)
Household-couple without children	2,145.291 (5,238.807)
Household-lone parent	-10,893.010 (8,680.746)
Household-more persons	-14,692.700 (10,603.800)
Household with full employment	-7,854.519 (4,880.305)
Constant	$57,976.710^{***}$ (7,887.771)
Observations R ² Adjusted R ² Residual Std. Error F Statistic	$\begin{array}{c} 288\\ 0.096\\ 0.073\\ 26,416.570 \ (df=280)\\ 4.240^{***} \ (df=7;\ 280) \end{array}$
Note:	*p<0.1; **p<0.05; ***p<0

Table 2: Regression of full bathroom expenditures on demographics

Demand for covered parking space

	Housing and neighbourhood characteri
<u>v.</u>	Bedroom
Household highest education	5,730.347*
	(3,007.345)
Household annual income	0.166^{***} (0.041)
	(0.041)
Household-couple with children	10,092.660*
	(6,097.920)
Household-couple without children	2,309.274
	(6,038.370)
Household-lone parent	12,291.120
1	(9,793.062)
Household-more persons	-14,316.560
A 1999	(11,890.260)
Household with full employment	$-6,\!646.441$
	$(5,\!530.086)$
Constant	27,082.420***
	(9,122.804)
Observations	278
\mathbb{R}^2	0.117
Adjusted R ²	0.094
Residual Std. Error	$29,372.670 \ (df = 270)$
F Statistic	5.128^{***} (df = 7; 270)
Note:	*p<0.1; **p<0.05; ***p<

Table 3: Regression of covered parking space expenditures on demographics

Demand for open space accessibility

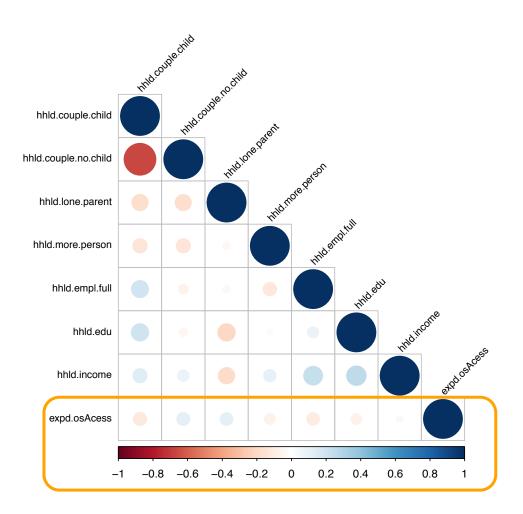


Table 5: Regression of open space accessibility expenditures on demographics

	Housing and neighbourhood characteris
	Bedroom
Household highest education	-338.902 (436.721)
Household annual income	0.003 (0.006)
Household-couple with children	-61.976 (872.456)
Household-couple without children	954.462 (859.353)
Household-lone parent	$2,\!630.832^*$ $(1,\!423.955)$
Household-more persons	-2,060.903 (1,739.406)
Household with full employment	$-1,507.609^{*}$ (800.546)
Constant	$-4,201.328^{***}$ (1,293.879)
Observations R ² Adjusted R ² Residual Std. Error F Statistic	$288 \\ 0.048 \\ 0.024 \\ 4,333.270 \text{ (df} = 280) \\ 2.010^* \text{ (df} = 7; 280) $
Note:	*p<0.1; **p<0.05; ***p<0

Relative to other studies, this study ...

- 1) builds on richer, more detailed data through a comprehensive housi survey
- 2) examines the housing market dynamics from individual behaviours
- 3) allows a strong direct connection between our implemented model and Alonzo's classic bid-rent theory models by
 - parameterising the utility function for empirical housing study with stro theoretical foundations
 - recovering heterogeneous housing demand by combining survey of and theoretical methods within 3-Steps
 - explaining varying preferences among heterogeneous households and thus provides more information than a traditional first-stage hedonic management.

Future work ...

1) Improve current model by

- using the stated preferences from survey to validate our proposed model
- building a multi-level hedonic regression with potential more data
- using probit models to estimate heterogeneous demand for dichor characteristics, such as In CTC, or Large Yard, Single detached h
- 2) Estimate heterogeneous household WTP for each house given demographics
- Simulate housing location choices in our Agent-Based land mark model: by adding more theoretically-grounded and empirically-valida behaviour rules (especially, utility parameterization and WTP estimate from this study)
- 4) Model and better interpret the housing market dynamics

		Estimation steps	Details
	(Bajari & Kahn, 2005)	Step 1	Estimate implicit prices by hedonic (α)
ır proposed		Step 2	Calculate expenditures on each characteristic (β)
		Step 3	Regress the expenditures (β) on demographics
nd estimation method	St	tep 4	Estimate the demand curve for each characteristic
Stej		tep 5	Estimate WTP for each characteristic
	Step 6		Estimate the total <i>WTP</i> for each house

WTP estimat

	Scenario 1	Scenario 2
y	Bidding war strategy	Adaptive listing strategy based on the recent transactions
yers	100	100
llers	80	80
	$WTA = hedonic price_1^1$	$WTA = hedonic price_1$
ice	List price _t = WTA	List $price_t =$ $WTA * \left(1 + \alpha * \left(\frac{average \ sales \ price_{t-1}}{average \ list \ price_{t-1}} - 1\right)\right)$, when average sales $price_{t-1} \ge average \ list \ price_{t-1}$, α is a factor ranging from 0 to 1 (norm distribution), reflecting heterogeneous market expectations among sellers
	Utility = Cobb - Douglas function	Utility = Cobb - Douglas function
	$WTP = f(utility, income, hedonic price_2^2)$	$WTP = f(utility, income, hedonic price_2)$
ice	Bid price _t = List price _t * $\left(1 + \beta * \left(\frac{average \ sales \ price_{t-1}}{average \ list \ price_{t-1}} - 1\right)\right)$, when average sales price _{t-1} ≥ average list price _{t-1} , β is a factor ranging from 0 to 1(norm distribution), reflecting heterogeneous market expectations among buyers	Bid price _t = Hedonic price ₁ * $\left(1 + \beta * \left(\frac{average \ sales \ price_{t-1}}{average \ list \ price_{t-1}} - 1\right)$, when average sales price _{t-1} ≥ average list price _{t-1} , β is a factor ranging from 0 to 1(norm distribution), reflecting heterogeneous market expectations among buyers
ıg	When <i>Bid price</i> \leq <i>WTP</i> , buyer starts sending offer	When <i>Bid price</i> \leq <i>WTP</i> , buyer starts sending offer

Table 1. Scenarios created to simulate the market dynamics for a seller's market

Housing ma simulations different sc

Acknowledgements

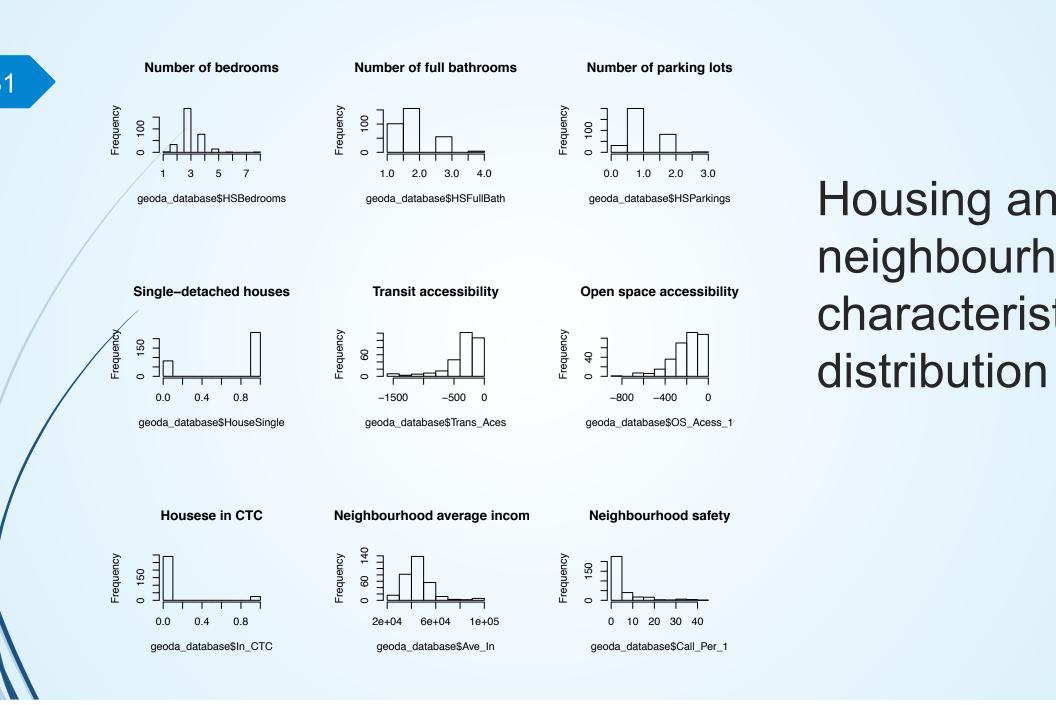
Team members:

7

- Professors: Dawn Parker, Jenifer Dean
- Students: Yu Huang, Justin Cook, Xinyue Pi

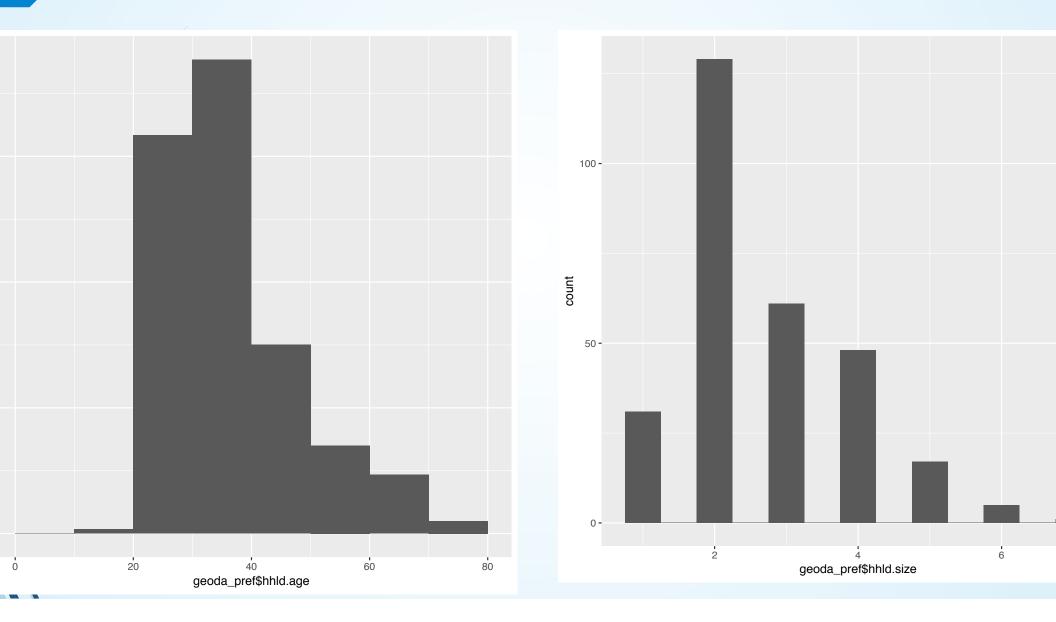
Funding Sources:

- SSHRC Partnership Development Grant (SSHRC # 890-2013-0034) entitled "LIGHT RAIL TRANSIT AND CORE-AREA INTENSIFICATION: Unpacking Causal Relationships"
- SSHRC Insight Grant (SSHRC # 435-2012-1697) entitled "Url intensification vs. suburban flight: An integrated residential lan use and transportation model to evaluate residential land man form and function"
- China scholarship programme (Yu Huang)

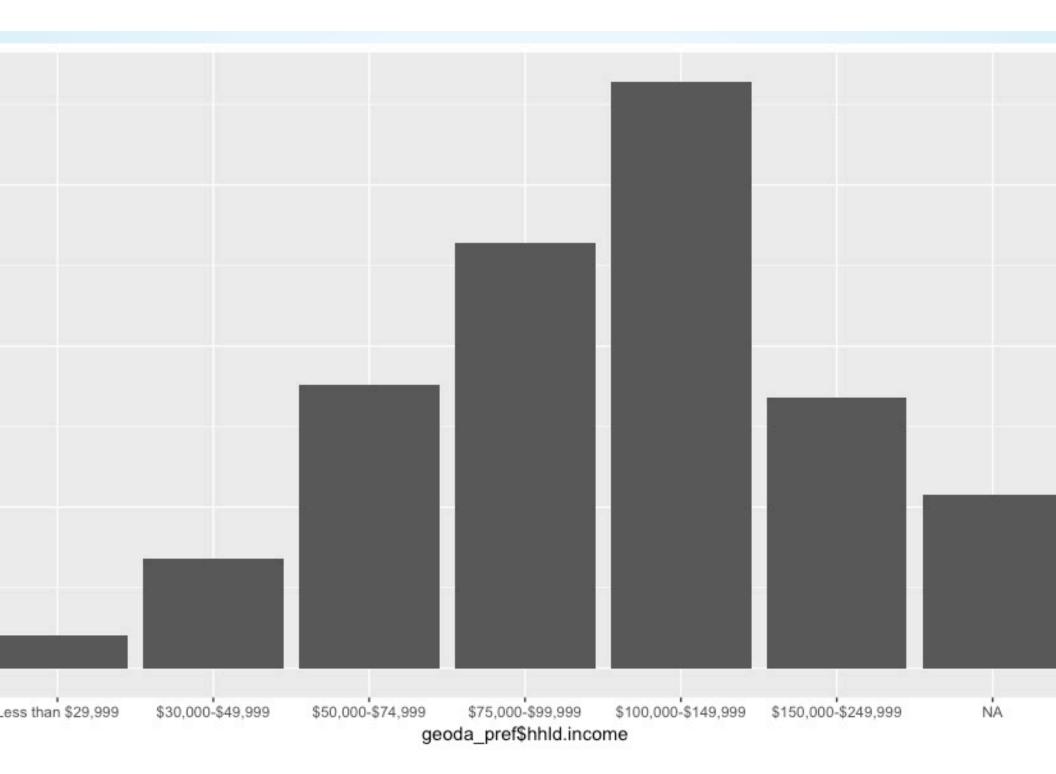

References

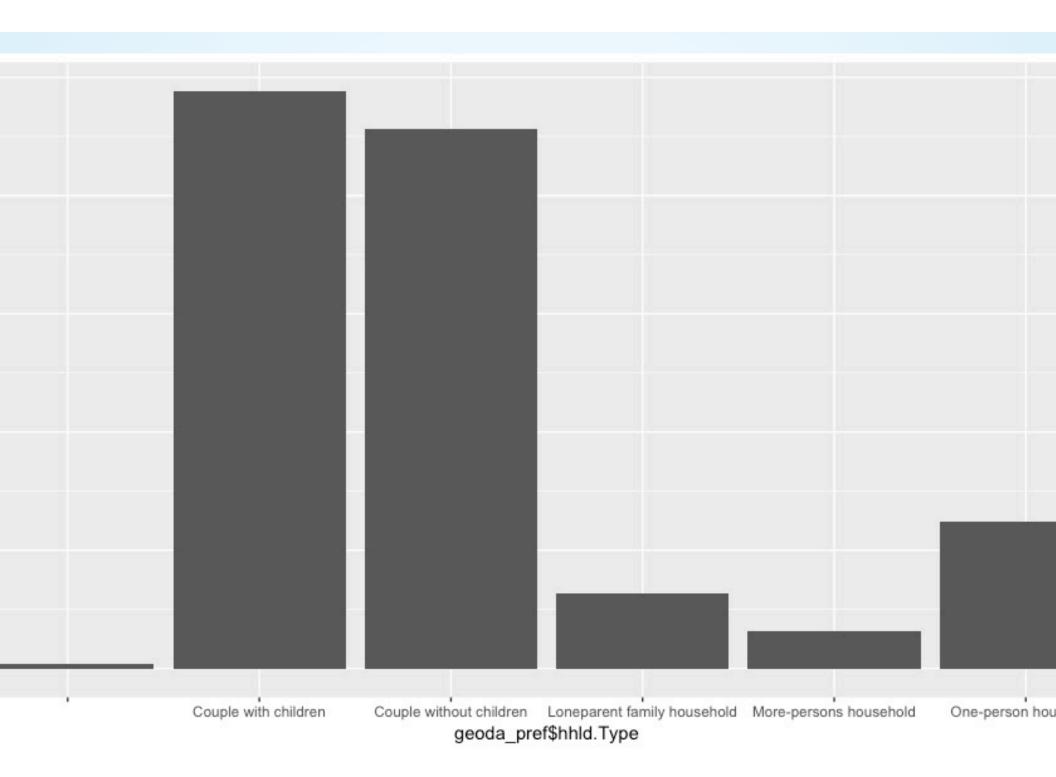
- Alonso, W. (1960). A theory of the urban land market. Papers in Regional Science, 6(1), 149-157.
- Bajari, P., and Benkard, C. L. (2001). Demand estimation with heterogeneous consumers and unobserved product characteristics: A hedonic approach.
- Bajari, P. and Kahn, M. E. (2005). Estimating Housing Demand with an Application to Explaining
- Rosen, S. (1974). Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition. Journal of Political Economy 82(1), 34–55. https://doi.org/10.1086/260169

Thank you for your attention!




2


Table 4. Household type definition (Statistics Canada, 2012a, footnotes section)


	Household type	Definition
	Couple-family with	Couple households with at least one child aged
	children at home	24 and under
	Couple-family without children at home	Couple households without children aged 24
		and under as well as couple households with all
Family households		children aged 25 and over
Family households	Lone-parent family	Lone-parent family households regardless of
		age of children
		Households in which two or more census
	Multi-family	families (with or without additional persons)
		occupy the same private dwelling
Non family bayesholds	One-person household	One person living alone in a private dwelling
		Two or more people who share a private
Non-family households	Other household	dwelling, but who do not constitute a census
		family

Household characteristics

Kitchener, Waterloo real estate sales surge as bidding wars break out

'Every house goes over the asking price, it's crazy' says one frustrated house hunter

By Colin Butler, CBC News Posted: Jun 08, 2016 5:07 PM ET | Last Updated: Jun 08, 2016 5:07 PM ET

Toronto buyers drive real estate prices up in Cambridge, Kitchener, Guelph

Sporadic real estate bidding wars will persist as influx of Toronto buyers continues unabated

By Colin Butler, CBC News Posted: Oct 04, 2016 5:30 AM ET | Last Updated: Oct 07, 2016 11:30 AM ET

